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Applications
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A lthough the utility of autonomous agents and multiagent systems in healthcare

applications is now well established, agent technologies themselves remain some-

what immature and, from a theoretical point of view, often ad hoc. We’ve developed a stan-

dard, or canonical, agent model that’s intended to be both theoretically well motivated and

technically well defined while permitting alternative
instantiations. 

Our starting point is the domino agent model.1

The Advanced Computation Laboratory developed
this model for healthcare applications, but its design
supports general-purpose cognitive agents. The
domino model is similar to the classical beliefs-
desires-intentions framework, but goes beyond BDI
by defining a complete set of processes to transform
between mental states, including a flexible decision-
making framework based on logical argumentation. 

The domino model reflects current trends in soft-
ware agent design, but it has broader justification in its
embodiment of features common to many disciplines
and theories of cognitive systems, including neuro-
science and cognitive psychology as well as AI.2 For
example, a number of basic cognitive functions are
widely held to be required by any intelligent agent:
perception and interpretation of the agent’s environ-
ment, goal setting and maintenance, problem solving,
decision making, plan assembly, plan execution, and
action selection. There is also a consensus on the types
of representation on which these processes operate:
beliefs, goals, and plans are assumed in a wide range
of approaches. In general terms, these functions and
representations are present across many theoretical
approaches to cognitive agents.3–5

The domino agent also provided the foundation
for a practical agent language, ProForma (www.
openclinical.org/gmm_proforma.html).6 ProForma-
has been used extensively to construct healthcare

applications such as decision support and clinical-
workflow management.

The domino model has been significantly ex-
tended within the Argumentation Services Platform
with Integrated Components project. Funded by the
European Commission, ASPIC involves a broad con-
sortium of partners concerned with the uses of argu-
mentation in agent systems, including nonmonotonic
reasoning, decision making, interagent dialogue, and
learning. Our canonical model captures the extended
model in a general, implementation-independent
way that provides a practical foundation for specific
system implementations and agent-implementation
tools. To address the need for canonical abstraction,
we’ve adopted software engineering’s concept of sig-
natures—a technique for defining software patterns
or invariant procedural properties.

A general model
Healthcare applications have a number of additional

requirements beyond the basic functions and repre-
sentations that are common to many cognitive-system
theories. (The “Related Work in Multiagent Health-
care Systems” sidebar describes four multiagent
healthcare systems that, in different ways, illustrate
these requirements.) On the basis of our experience
with healthcare systems, we’ve identified three key
requirements over and above the basic domino model:

• A communication capability for interactions
between agents, which is important for multiagent
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systems but not supported by the for-
malisms proposed for modeling clinical
guidelines, workflows, and so on.

• A well-developed model of decision mak-
ing under uncertainty, which is generally
regarded as fundamental to dealing with
the complexities of clinical practice. Re-

searchers have described how to embed
this capability in an agent system and
incorporate logical argumentation tech-
niques for decision making.1,6,7

• The ability to access or communicate the
knowledge and arguments used in specific
decisions, a requirement that supports col-

laborative decision-making in multiagent
applications.

We extended the domino model to meet these
requirements. Figure 1 shows the extended
model. It’s built around the six basic entities
of the original domino model, which can
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Jun Huang, Nicholas R. Jennings, and John Fox described an
early multiagent system for a distributed healthcare application
in which each agent could reason and make decisions.1 They dem-
onstrated their approach’s technical adequacy in an experimen-
tal application for managing breast-cancer treatment. Each
agent in the application could make decisions based on a stan-
dard technique. Huang’s agents implemented part of the do-
mino model,2 (the left side of the model in figure 1 in the main
article): reasoning about beliefs, raising goals, problem solving
to identify possible solutions to the goals, and deciding which
of the solutions was best in the circumstances. Agents could
have different expertise and seek assistance from another
agent in certain circumstances. For example, “general prac-
titioner” agents might have broad knowledge of general medi-
cine and a patient but need the deeper expertise of a “cancer
specialist” agent on more difficult problems in that domain.
The specialist could delegate part of its responsibility for certain
clinical tasks to the general practitioner and through the gen-
eral practitioner to specialist nurses. Delegation gave Huang’s
system a degree of robustness because if an agent acting for one
of the healthcare professionals refused or dropped a commit-
ment, the managing agents could reassign the required task.

Elizabeth Black also demonstrated the technical feasibility of
an agent network in the breast cancer domain.3 She implemen-
ted a number of proxy agents for supporting general practition-
ers and cancer specialists in clinical genetics. All the agents
could follow guidelines and enact simple clinical plans. They
could also make decisions (for example, decisions to refer pa-
tients from a primary care unit to a genetics clinic). The agent
architecture was based on the domino model2 and used the
PROforma agent and process specification language to repre-
sent decision guidelines, plans, and other tasks.4 Black used a
similar but more specialized agent model to investigate several
patient-referral strategies, in which one agent requests another
to carry out a specialist service. She found significant potential
benefits in speeding up the journey breast cancer patients
make through a number of clinical processes.

The Carrel system is being developed in Spain’s Catalonia
region to support management of organ transplants.5 The sys-
tem uses an agent institution, a system that defines protocols
and norms through which agents can argue the merits of par-
ticular allocations of tissues and organs to patients. Although
Spain’s National Transplant Service is among the world’s best,
it shares a problem common with all such services: many po-
tentially available organs are wasted (“discarded”). Among
the reasons for this wastage is that experts located at the do-
nor’s site have exclusive authority to assess the organ’s viability
for transplantation—a decision-making process that ignores
the very real possibility of disagreements among experts on
such matters. As well as helping identify potential recipients for

a donated organ across multiple transplant units, the Carrel sys-
tem will therefore also coordinate the joint deliberations of do-
nor and recipient agents as they determine appropriate assign-
ment decisions. The system carries out its joint deliberation
through an argumentation-based dialogue, in which a mediator
agent evaluates the exchanged arguments to determine the
winning argument. As a result, an organ that would ordinarily
be discarded because a donor agent considered it nonviable
could be transplanted if a recipient agent successfully argues its
viability for the particular recipient the agent represents.

Cancer Research UK is developing the CREDO project to sup-
port women with proven breast cancer and women who are
well but at risk because of genetic predisposition. The CREDO

model of the “patient journey” for breast cancer care includes
some 220 different services, packaged into approximately 12
different specialist packages; each package can be implemen-
ted as a PROforma agent.4 CREDO aims for a comprehensive
management approach. In addition to delegating tasks and
managing workflows, reminiscent of Huang’s approach, CREDO

will capture data, recognize and interpret clinical events, no-
tify colleagues of adverse or other significant circumstances,
modify plans on the fly, and so on. This degree of flexibility
and versatility involves significant technical challenges, includ-
ing effective communication and coordination, prompt and
safe decision making, collaborative treatment planning and
timely execution of plans, and the ability to avoid repeating
mistakes.

References

1. J. Huang, N. Jennings, and J. Fox, “An Agent-Based Approach to
Health Care Management,” Int’l J. Applied Artificial Intelligence,
vol. 9, no. 4, 1995, pp. 410–420.

2. S. Das et al., “A Flexible Architecture for Autonomous Agents,” J.
Experimental and Theoretical Artificial Intelligence, vol. 9, no. 4,
1997, pp. 407–440.

3. E. Black, “Using Agent Technology to Model Complex Medical
Organizations,” AgentLink News, Apr. 2003, pp. 7–8.

4. J. Fox et al., “Decision Support for Healthcare: The PROforma Evi-
dence Base,” Informatics in Primary Care, vol. 14, no. 1, 2006, pp.
49–54. 

5. P. Tolchinsky, S. Modgil, and U. Cortes, “Argument Schemes and
Critical Questions for Heterogeneous Agents to Argue over the
Viability of a Human Organ,” Papers from AAAI Spring Symp.,
tech. report SS-06-01, AAAI Press, 2006; http://www.aaai.org/
Library/Symposia/Spring/ss06-01.php.

Related Work in Multiagent Healthcare Systems



NOVEMBER/DECEMBER 2006 www.computer.org/intelligent 23

itself be seen as an extension of the BDI
agent model. In our terminology, beliefs are
aspects of the agent’s environment or its own
mental states, which the agent holds to be
true (that is, the agent will act upon them
while they continue to hold). Goals are
equated with “desires” and plans with “inten-
tions.” We view intentions as commitments
to new beliefs or to carrying out certain plans
or pursuing new goals in the future.

A fundamental capability of the agent
model is the ability to make decisions under
uncertainty—that is, to make choices be-
tween competing beliefs or alternative plans
given a lack of certain knowledge about the
true state of the environment or about the con-
sequences of possible actions on the envi-
ronment. The model introduces a four-step
decision procedure in which an agent can
identify decision options (competing beliefs
or plans), construct arguments for and against
the options, assess the relative strength of the
sets of arguments for alternative options, and
commit to the most-preferred option.1,6

The decision procedure reflects our pri-
mary ASPIC project activity—namely, to de-
velop an agent framework that can integrate
the different roles of argumentation in a prin-
cipled way. Two features of the extended
model accommodate this activity:

• Interagent dialogue models. Project part-
ners are developing and formalizing intera-
gent dialogue models (www.argumenta-
tion.org), and we’re incorporating the results
into our extended model for use in the Car-
rel and CREDO applications described in the
sidebar. For example, we’re extending stan-
dard FIPA-like performatives to include
those that facilitate coordination on collab-
orative tasks, such as joint decision making
or service negotiation, where deliberative
or dialectical argumentation between agents
is required.

• Machine learning. Project partners are
investigating the relationship between argu-
mentation and machine learning. Learning
capabilities are especially important in
healthcare applications, because human
errors and system failures will occasionally
occur no matter how well we design our
systems. To support learning from experi-
ence and corrections to procedures, the
agent platform should on all occasions
maintain records of what happened, what
decisions were taken and why, and what
the outcomes were.

From agent model 
to agent design

We now aim to formalize the agent model
in a way that captures the primary functions
shown in figure 1 in a general and implemen-
tation-independent way, yet which can pro-
vide practical foundations for specific agent
design and implementation tools. To address
this we have adopted the concept of a signa-
ture from software engineering which is a
technique for defining software “patterns” or
invariant properties of software procedures.

The signatures abstractly represent the pre-
and post-conditions of a procedure. Figure 2
presents our proposal for a set of signatures
covering the central functions of a “canoni-
cal” agent1–8 augmented with signatures for
dialogue and learning.9–12 The ASPIC project’s
formal inference model for argumentation has
informed the model’s development, as have
the project’s use of arguments in decision
making and dialogue, and the integration of
argumentation with learning. 

The signature variables are complex types.
For example, the signature T1 abstractly
describes a procedure for making inferences
over beliefs. Consider the informal belief,
“Mrs. Smith is at risk of a heart attack.” We
could model this belief as a pair [Context,
Claim] in which Context is “Mrs. Smith” and
Claim is atRiskOf(“heart attack”). In each
signature, Theory is a complex type repre-
senting domain knowledge or anything that
we can formalize as a collection of predicates
(for example, a logic program). The intuitive

interpretation of this signature is simply that,
given a set of beliefs about a particular situ-
ation, the agent can infer all beliefs that log-
ically follow from the agent’s current beliefs
and knowledge. At this level of abstraction,
the signature subsumes many different spe-
cific forms of inference, including monotonic
and nonmonotonic logical inference and
probabilistic or other quantitative models.

In a more sophisticated agent, the signa-
ture might remain the same but the belief’s
type is more complex. For example, consider
“Mrs. Smith is believed to be at risk of heart
attack because of an abnormal ECG.” We
could follow Stephen Toulmin’s classic ap-
proach to modeling argumentation,12 model-
ing this as a triple [Context, Claim, Warrant]
in which the third-place Warrant represents a
justification for Claim in this Context. In this
scheme, we can distinguish distinct lines of
reasoning (for example, “Mrs. Smith is at risk
of a heart attack because she had one last
year”) because the two warrants (“abnormal
ECG” and “previous heart attack”) are ex-
plicit. When we represent the belief as a pair,
the warrant remains implicit in the theory and
the distinction between the different lines of
reasoning isn’t directly represented in the
agent’s mental state.

In our proposal, we go a step further, mod-
eling an agent’s beliefs as 4-tuple type def-
initions:

Belief �def (Context, Claim, Warrant,
Qualifier) (T1)

Learning Communication
acts

Option Commitments

Goals Beliefs Action

PlansOp

Goals Action

s

Cycle 2

Cycle 1

Figure 1. A general agent model subsuming the classic beliefs-desires-intentions 
framework (white ellipses, where goals are equated with desires and plans with
intentions). Cycles 1 and 2 refer to the first two processing cycles of the example
healthcare scenario. The dotted lines to the Learning entity indicate that there are
other options for linking learning into the agent model.
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where Qualifier (a term also adopted from
Toulmin) makes the relationship between
Warrant and Claim explicit. For example, the
qualifier’s value might be strict, indicating
that Claim is asserted to be deductively
(monotonically) true, or defeasible, indicat-
ing that Claim holds until such time as a suc-
cessful attack is mounted against its Warrant.
In the latter case, Qualifier can also represent
an argument’s defeated status.

This general signature and type structure
can also accommodate degrees of belief—for
example, “Mrs. Smith is believed to be at risk
of heart attack with certainty 0.5 because of
an abnormal ECG.” There are many schemes
for quantifying uncertainty levels in inference
and belief maintenance: Bayesian or objec-
tive probabilistic inference, possibility the-
ory, certainty factors, and so on. We can
model many such schemes as instances of this
general signature.

In the remainder of this section, we’ll sum-
marize those signatures in figure 2 that are
associated with various kinds of argumenta-
tion. Type definitions T1–T6 define the prin-
cipal types for the left side of the agent model
in figure 1, used in signatures S1–S6. In each
case, we’ve adopted a 4-tuple type similar to
that for beliefs, with a context in the first place
and the primary content in place 2. The model

supports variable types at different complex-
ity levels; lower-order (place 2) types have
lower computational demands, and higher
types (places 3 and 4) give more flexibility but
at greater computational cost.8 We’ve elected
to adopt more complex types throughout the
canonical model, as this facilitates nonmonot-
onic computation (through place 3) and more
reflective (self-aware) mental states through
place 4. We reserve place 3 for the context and
other information that justifies the primary
content; place 4 is for an appropriate modality
(a generalization of Toulmin’s “qualifier”).

Goals
It is a truism of AI that to build autonomous

agents that can cope with complex, unpre-
dictable environments, we must separate the
cognitive and rational aspects of intelligence
(what the agent believes about a particular sit-
uation and how it decides to act) from the
operational aspects (what it actually does).
The key concept here is the agent’s goal,
which determines what the agent wishes to
achieve, not how it will achieve it. In BDI
terms, the agent’s desires link its beliefs to its
intentions. Drawing on the discussion by
Michael Winikoff and his colleagues,13 we
can define a set of properties characterizing a
rational agent’s goals. The goals must be

• explicit (if an agent is to reason about
them),

• pertinent (with respect to some initiating
situation or challenge),

• consistent (goals should not conflict), and
• persistent (goals exist so long as their suc-

cess or failure conditions are not satisfied).

A type definition for Goal in signatures
S2–S7 and S10 of figure 2 is

Goal �def (Context, Objective, Issue,
Status) (T2)

where Objective is a term representing the state
that the agent wishes to bring about in the Con-
text, such as a threat or an opportunity, and
Issue represents the circumstances that led to
the goal being raised (Issue ≠ Context). Draw-
ing on Winikoff’s discussion again, a goal can
have two other properties—namely, whether
it is achievable and whether it is achieved. The
signature’s place 4 is required for Status—that
is, information about whether the goal is cur-
rently active (that is, pertinent, achievable, and
not yet achieved) or dropped (achieved or not
pertinent or not achievable).

Options
Goals can be epistemic (for example, an

agent has a goal to interpret, explain, or pre-
dict events in the world) or practical (for exam-
ple, the agent wishes to prevent or bring about
situations in the world that are consistent with
its desires). Whatever type of goal the agent
has, it must find a solution to the challenge that
initiated it. Because multiple viable solutions
might exist, we’ve adopted the term Option for
a viable candidate. Its type definition is

Option �def (Context, Candidate,
Rationale, Viability) (T3)

where Candidate can be a simple term, such
as an atom naming the option, or—in more
interesting situations—a complex object. For
example, if the goal is to explain an observed
event, an option might be an extended narrative
or causal graph. If the goal is to achieve some
change in the world, Candidate might be the
result of a planning or design process. Ratio-
nale is the justification for Candidate, and Via-
bility is Candidate’s current status. An option
can be viewed as viable while the status of an
explanation for some event is convincing or a
plan’s preconditions remain satisfied, but oth-
erwise it’s nonviable. Whatever the type of
thing that Candidate is intended to be, signa-

S1. Inference

Belief × Theory

Belief

S3. Problem solving

Goal x Belief x Theory

Option

S2. Goals

Belief x Theory OR
Goal × Theory

Goal

S5. Evaluate arguments

Goal × Option x Arg × Theory

Merit

S4. Construct arguments

Goal x Option × Belief × Theory OR
Arg x Option × Belief × Theory

Arg

S6. Commit to option

Goal x Option x Merit x Theory

Belief OR 
Plan

S7. Plan enactment

Goal x Plan x Theory

Act OR 
Plan

S9. Communication

Message × Theory

Belief OR
Theory

S8. Action execution

Act × Resource

Action OR 
Message

S10. Learning: MLBA

Belief × Goal × Theory

Theory

S12. Learning: CBL

Belief × Option

Theory

S11. Learning: ABML

Belief × Arg × Theory

Theory

Figure 2. Signatures for the canonical agent model’s primary functions. In each signature,
the variables above the line represent an input data pattern that instantiates each 
variable with a 4-tuple of the appropriate form for the type. The variable below the 
line represents the component’s output and is similarly instantiated.
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ture S3 of figure 2 and its associated option
type is intended to capture an invariant pattern
shared by many different kinds of problem-
solving capabilities that intelligent agents need.
At first glance, it might appear that signature
S3 can’t be sufficient to cover a wide-enough
range of cases for practical applications, but to
date we haven’t identified an example that we
couldn’t reduce to this basic pattern.

Decision making
When an agent has multiple options, it must

usually choose among them. In our model, the
choice is arrived at through an argumentation
process.1,6 The process involves several steps
(signatures S4–S6, figure 2). After the agent
identifies the decision options, it constructs
arguments about each one, aggregates the
arguments to yield a preference ordering, and
makes a commitment to the preferred option.
Each function has its own signature with char-
acteristic pre- and postconditions.

The decision-making argument’s type has
a form similar to the type for the inference-
making argument in T1:

Argument �def (Context, Candidate,
Warrant,
Qualifier) (T4)

However, basic inferencing restricts Qual-
ifier to represent whether the argument is
accepted or defeated, whereas Qualifier can
have additional properties in decision mak-
ing, such as a polarity to indicate whether an
argument is for or against Candidate.

Our decision model allows any number of
arguments to support or oppose an option, so
another step in the decision procedure is to
establish the overall Merit of the options by
weighing the pros and cons of their arguments.
The simplest representation of Merit is a
numerical value, which an agent can use to
induce a preference order over the options.
However, an ordinal or “logical” scale is also
possible, based on increasingly stringent ac-
ceptability criteria according to the pattern of
arguments about the options. Type definition
T5 is intended to accommodate both qualita-
tive and quantitative interpretations of Merit:

Merit �def (Context, Candidate, Goal,
Support) (T5)

Knowing that an option is the most pre-
ferred among a set of options might be suf-
ficient for an agent to commit to it at a given
point, but this approach won’t always be

satisfactory because an agent that’s interact-
ing with a dynamically changing world can
receive new information at any time. Poten-
tially, therefore, the agent can construct addi-
tional arguments for or against an option and
defeat existing arguments at any time. Con-
sequently, the preference order over the
options could change. This situation calls for
a principled stopping rule that lets the agent
safely commit to an option in the knowledge
either that nothing will change the current
preference order or, more pragmatically, that
it’s better to commit now than to risk incur-
ring greater costs through delay. The problem
of stopping rules is discussed at greater length
elsewhere.1 A further type is required to rep-
resent an agent’s commitments. This makes

explicit both the candidate’s commitment sta-
tus (for example, “open,” “defeasibly com-
mitted,” “strictly committed”) and the stop-
ping rule that the agent has used:

Commitment �def (Context, Candidate,
StopRule,
CommitStatus) (T6)

In healthcare applications, a human expert
(such as a clinician) must sometimes make the
final commitment to a decision. In these cases,
the computer system is restricted to offering a
reasoned recommendation rather than taking
the decision autonomously. Stopping rules can
be domain-independent or domain-specific;6

they are therefore defined within the Theory
part of signature S6 (figure 2). 

Plan enactment
and action execution

An agent will typically pursue its goals via
extended plans of action. It might construct
plans specifically in response to a problem or

select them from a library of precompiled plans
appropriate to situations in which it typically
finds itself. In either case, we treat the con-
struction or selection of a suitable plan under
signature S3, which treats an entire plan as an
Option. The AI literature views a plan broadly:
it comprises either a sequence or collection of
more or less well-defined tasks (including spe-
cific actions, decisions, or subplans) or a set of
subgoals to be achieved, leaving the details of
how to do so to the circumstances that prevail
when the plan is executed. Signature S7 is
defined in terms that encompass all of these
possibilities. The new types we encounter in
S7 are Plan and Act. We define the Plan type as
follows:

Plan �def (Context, Schema, Rationale,
Status) (T7)

where Schema is a relatively neutral term for
the sequence of actions, subgoals, or subplans
constituting the plan’s content. T7 also repre-
sents the Rationale for the plan choice, and Sta-
tus tracks whether a plan is active, discarded,
successfully completed, or aborted—a set of
states drawn from our experience in healthcare
plan representation. This is the minimum set
of states we have found necessary in that
domain, though more complex schemes have
also been used.6

At some point, a plan’s enactment will “bot-
tom out” in the execution of actions in the
world. We define the Act type in signature S7
as follows:

Act �def (Context, Action, Goal,
Status) (T8)

where Action defines an action in the world
in an implementation-specific way. The Act
type includes the action’s Goal, which the
agent must know to monitor the action’s suc-
cess. The Status field can include the states
“requested” (indicating that the agent has
requested an action but has received no feed-
back on its outcome), “successful,” and
“failed” (indicating that the requested action
has been taken with observable effects rela-
tive to its goal). Again, this is a practical
minimum, but data requests in real clinical-
information systems often use other domain-
specific or application-specific status terms.
Signature S8 governs the execution of
actions. Taking an action in the world re-
quires specifying both the action itself (the
Act type) and the resource to be used to
implement the action (example resources

An agent that’s interacting with

a dynamically changing world

can potentially construct

additional arguments for or

against an option and defeat

existing arguments at any time.
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might include a physical device or an exter-
nal software system). The Resource field of
S8 abstracts from both of these cases.

Communication and dialogue
Signature S8 indicates that one way to exe-

cute an action in the world is to send a mes-
sage to another agent. In principle, this could
be another artificial agent or a human. A mes-
sage is a sufficiently important action subclass
to merit separate treatment. We therefore de-
fine a Message type as follows:

Message �def (Context, SpeechAct,
Provenance, Status) (T9)

where the SpeechAct field contains the mes-
sage content. Because messages are typically
sent as part of a dialogue, the agent must track
their origin so we need to record the speech
act’s provenance—that is, whether it originates
with “self” or another agent and, if the latter,
which one.

As signature S9 indicates, an agent  may
also receive messages from other agents. Given
a dialogue theory, which all participants in a
conversation must share, we can interpret
another agent’s SpeechAct as providing us
with information. In general, we can gain two
types of information from a message. Most
straightforwardly, we might gain a new belief
about the world. However, because the mes-
sage might originate from an agent that has its
own theories with which to interpret its beliefs
(comprising its domain or general knowledge),
we might alternatively gain a new or updated
theory. Signature S9 reflects these two possi-
ble types of message content.

Learning
The final three signatures of figure 2,

S10–S12, concern learning. They represent vari-
ations on a common theme that views learn-
ing as a process in which the agent can update
or generate its own theories as a result of expe-
rience. The experience on which learning is
based will generally include beliefs, but its
other components can depend on the type of
learning that’s taking place. We’ve been parti-
cularly interested in three learning variants
within the ASPIC project:

• Machine-learning-based argumentation
(MLBA, S10) is a modified version of
inductive-logic programming; the type of
theory learned is a new set of arguments
that can be applied to future induction and
decision making. 

• Argumentation-based machine learning
(ABML, S11) is a novel method in which
the agent can guide the learning process by
providing arguments that can hint at the
salient features to learn about a situation. 

• Case-based learning (CBL, S12) includes
methods that might consider an entire option
(see T3) as the material for the learning
process. 

We’re interested in integrating these learning
methods into the agent framework, rather than
their individual details, and we’re particularly
interested in the question of whether it will
prove possible to reduce S10–S12 to an even
more general form.

Implementation
The canonical agent model has been imple-

mented using the Cogent cognitive modeling
package,14 which layers a variety of tools for
cognitive modeling and simulation experi-
ments on top of the Prolog programming lan-
guage. The model uses a central working
memory, which carries information about the
agent state (beliefs, goals, arguments, and so
on). Elements in the working memory com-
ply with the type definitions T1–T9, and the
current demonstration system includes com-
ponents that implement signatures S1–S9 to
read and write these elements. 

The model includes two knowledge repos-
itories containing facts, rules, schemas, and
so on, which form the signatures’ Theory or
knowledge element:

• A general knowledge repository, intended
to be identical in all of a particular imple-
mentation’s agents, includes, for example,
facts and schemas to implement a partic-
ular dialogue theory. 

• A domain knowledge repository specifies
knowledge that is unique to a single agent. 

In our demonstration system, all agents are
canonical—that is, all computational com-
ponents comply with the relevant signatures.
In fact, the only differences between agents
are the contents of the domain knowledge
repository.

The signatures in figure 2 specify general
constraints on the pre- and postconditions of
each functional component of the agent model.
In each signature, the variables above the line
represent an input data pattern that instantiates
each variable with a 4-tuple of the appropriate
form for the type. The variable below the line
represents the component’s output and is sim-

ilarly instantiated with an appropriate 4-tuple.
At the signature level, each function is a black
box that might be implemented in any number
of ways—for example, in a conventional pro-
cedural algorithm, a set of production rules, a
logic program, or hardware. 

The present Cogent version implements
the signatures as declarative if … then “meta-
rules.” Each rule constantly monitors the
working memory’s state to determine whether
an instance of its signature precondition is sat-
isfied; if so, the rule asserts into working
memory a tuple of the type specified in the
postcondition. If a rule’s preconditions are
satisfied, the rule updates working memory
appropriately. These updates can themselves
satisfy other components’ preconditions,
leading to further updates and so on. This
approach is in line with the view that agents
are usually reactive, responding dynamically
to changing circumstances. At a higher level,
however, sequences of rules implement delib-
erative processes, such as reasoning, goal-
based decision making, and plan enactment.

The signatures of figure 2 define the input-
output conditions of each process in the
canonical agent. We implemented each sig-
nature directly as a Cogent rule that defines
the triggering conditions and the input/out-
put types. The actual process underlying the
signature is implemented as a Cogent condi-
tion definition (essentially a Boolean condi-
tion expressed in Prolog) and an action which
updates the working memory. To change the
implementation, a system designer could
substitute a different condition definition
while retaining the same signature rule.

Evaluation scenario
Our current implementation is being val-

idated on a standard multiagent healthcare
scenario developed as part of the EU’s ASPIC

project. We outline the prototype implemen-
tation’s operation here by describing a sce-
nario involving two agents, a cardiac agent
and a guardian agent. The CA and GA carry
out a shared task and communicate via a mes-
sage bus that they both can read and write
messages to and from. The two agents are
identical in every respect except in their
domain-specific knowledge. CA has knowl-
edge relevant to the diagnosis and manage-
ment of heart problems. GA, on the other
hand, has knowledge related to medical safety,
including knowledge related to the safety of
drugs used under a variety of conditions. The
two agents engage in the cooperative man-
agement of a patient, Mrs. Smith, who is suf-



fering from a suspected heart attack. Figure 3
shows their dialogue in schematic form.

This scenario represents a realistic, if sim-
plified, healthcare application. The Cogent
agent model implementation carries out the
scenario exactly as we detail it here.

Processing within each agent roughly fol-
lows the cycle of processes we’ve defined.
Figure 1 shows the scenario’s first two cycles,
which we’ll describe in detail; subsequent
cycles are described in less detail, but they are
similar.

Cycle 1
CA starts with two beliefs: Mrs. Smith

is elderly and she has chest pain. From its
domain-specific knowledge about cardiac
problems, the agent infers the possibility of
a myocardial infarct (the inference process
labeled Beliefs in figure 1, defined in sig-
nature S1 of figure 2) and raises a goal to
manage this condition (the Goals process
of figure 1 and S2). CA proposes two can-
didate solutions (S3) for the goal: treatment
with the drugs clopridogrel or aspirin (this
example is intentionally simplified, from a
medical point of view).

The agent can construct several argu-
ments (S4) for and against each candidate
drug. Our prototype implementation con-
structs arguments based on effectiveness,
cost, and availability because its domain
knowledge contains the facts that cloprido-
grel and aspirin are both available and effec-
tive treatments, but only aspirin is cheap.
The aggregation process (S5) determines
that the balance of argument favors pre-
scribing the cheaper generic drug aspirin.
However, the commitment process (S6)
determines from its domain knowledge
(Theory) that CA isn’t authorized to make a
firm commitment to drug-prescribing deci-
sions, so the commitment to use aspirin is
qualified as “provisional.”

Cycle 2
The presence of a provisional commit-

ment now triggers the Goals process (S2) in
CA to raise a goal to confirm the commit-
ment. S3 can propose an option to achieve
this goal by opening a “confirmation” dia-
logue with an appropriately authorized
agent. CA’s domain knowledge includes the
fact that GA is authorized to confirm drug
prescription decisions, and CA’s S3 process
introduces the intention to consult GA. The
system is unable to raise any argument
against this intention, so CA commits to it

(S4–S6; CA isn’t prohibited from carrying
out dialogue actions and therefore makes a
“firm” rather than “provisional” commit-
ment). This triggers initiation of plan enact-
ment (S7). The plan associated with the
intention has two steps: request an “inform”
dialogue with GA, then ask for confirmation
of the prescription decision. CA executes the
first of these steps (S7 and S8), making a dia-
logue move addressed to GA with type “re-
quest” (a request to open a dialogue) and
content “inf” (an “inform” dialogue).

Remaining cycles
Referring to figure 1, the first two pro-

cessing cycles within agent CA have in-
volved most of the agent model’s processing
elements and have exercised signatures
S1–S8. Cycle 1 traversed S1-S2-S3-S4-S5-
S6, and cycle 2 traversed S2-S3-S4-S5-S6-
S7-S8. Processing in the model generally fol-
lows this sequence: each metarule triggers
its associated process immediately when its
preconditions are met (which is usually, but
not necessarily, the result of the preceding
process’s termination). The same general
sequence of operation holds for both agents
in the remainder of the scenario.

Referring to figure 3, GA receives the dia-
logue move (S9), leading to a belief that trig-
gers a goal to respond to CA’s dialogue request.
A simple solution—to accept the request—
passes unopposed through the argumentation
and commitment phases and leads to GA exe-
cuting a dialogue move accepting CA’s dia-
logue request.

CA’s plan-execution process sees the

acceptance as a successful outcome of its first
step and proceeds directly to the next step in
its plan: a “question” dialogue requesting
confirmation of the proposed administration
of aspirin to Mrs. Smith.

GA responds by raising a goal to confirm
CA’s decision, and its S3 process proposes
CA’s intention to prescribe aspirin as an option
for argumentation. GA’s S4 process proceeds
to construct arguments for and against aspirin
treatment for Mrs. Smith. The arguments dif-
fer from the set raised by CA because GA has
different domain knowledge. In fact, GA’s S4
process raises a single argument based on a
schema that essentially says, “If a treatment
is proposed that is known to exacerbate a con-
dition, and if the treated patient is known to
be susceptible to that condition, then this con-
stitutes an argument against the proposed
treatment.” GA has domain knowledge that
aspirin exacerbates gastritis and that Mrs.
Smith is susceptible to gastritis, so this argues
against CA’s provisional decision to prescribe
aspirin.

GA can now satisfy its current goal by
informing CA that its decision is rejected. Ar-
gumentation, commitment, and plan execu-
tion for this candidate plan take place in the
usual way (but are, in fact, perfunctory), and
GA makes a “reject” dialogue move.

CA recognizes the rejection as a failure
mode for its most recent dialogue action. It
marks that action “failed” and hence the plan
that contained the action is “aborted.” This trig-
gers CA’s S2 process to raise a goal to under-
stand the reason for the rejection, a standard
reaction defined in its general knowledge. One
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Figure 3. Outline of the dialogue between cardiac and guardian agents in the 
evaluation scenario. CA starts by proposing a drug (aspirin), which GA rejects as
unsafe. CA challenges this rejection, and GA responds by providing the argument it
used to reject the drug. CA incorporates this argument into its reasoning process and
concludes that a different drug would be appropriate. GA confirms that this decision
will be safe.



option to achieve this goal is to carry out a
“challenge” dialogue, eliciting an explanation
from GA in the form of arguments that led to
the rejection of aspirin. CA duly executes an
appropriate dialogue action.

GA now raises a goal to respond to the chal-
lenge. Its S3 process constructs an “argue”
dialogue move, containing the “gastritis argu-
ment” against aspirin.

CA receives the “argue” message contain-
ing the argument against aspirin and, conse-
quently, revises its aggregation and commit-
ments on the basis of the changed argument
structure. Aspirin is now rejected, and clo-
pridogrel accepted. Again, because the option
“clopridogrel” represents a drug prescription
plan, CA can only provisionally commit to it.

This time, however, GA can construct no
arguments against CA’s proposal to treat Mrs.
Smith with clopidogrel, so it makes an
“inform” dialogue move telling CA that its
proposal is acceptable. CA can now convert
its provisional intention to treat Mrs. Smith
with clopridogrel to a firm commitment, and
it begins enacting an appropriate prescription
plan. CA requests that clopidogrel be admin-
istered to Mrs. Smith, which completes the
plan, and so the execution finishes.

We intend the set of canonical signa-
tures we’ve presented here to pro-

vide a clear, transparent definition of our
model and a standard against which to com-
pare alternatives and facilitate agent compo-
nent reuse. It could also become the basis of
a more sophisticated version of the ProForma
language. We hope this article will kindle dis-
cussion about the utility of a standard lan-
guage along these lines in healthcare. The
model provides a practical framework for
designing and realizing multiagent systems,
but we believe its formalization in terms of
canonical signatures could lead to insights into
functions that are common to many agent the-
ories and technologies.
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